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Abstract-The influence of buoyant effects on developing heat transfer in strongly curved duct tlows has been 
studied numerically for the special case of steady state, incompressible iaminar flow of a constant physical 
property fluid to which the Boussinesq approximatjon applies. The two cases of: (a) buoyant forces aligned 
with, and (b) opposed to the main flow direction were investigated. The presence of several streamwise 
recirculation zones necessitates the solution of fully elliptic transport equations. It is found that when 
buoyant forces are aligned with the main flow direction in curved duct flow geometries they can significantly 
enhance the rate of heat transfer, especially at the inner-radius wall. By contradistinction, when buoyant 
forces and the main flow are opposed, three additional elongated recirculation zones which appear at the 

inner-radius wall are the cause for reduced heat transfer to the flow in a curved duct. 

NOMENCLATURE 

specific heat capacity at constant pressure; 

Dean number [- Ree)“‘]; 

hydraulic diameter; 
gravitational constant ; 
Grashof number ( = p’gjS( 7’, - ~~)D~/~‘) ; 
thermal conductivity ; 
coordinate normal to duct wall; 
local Nusselt number; 

perimeter averaged Nu ; 
pressure; 

heat flux; 
radial coordinate ; 
inner-radius wall of curved duct ; 
outer-radius wall of curved duct; 
mean radius of curvature; 
Reynolds number (= DHpVn/~); 

temperature; 
bulk temperature; 
inlet flow temperature; 
wall temperature; 
radial velocity component ; 
axial (spanwise) velocity component; 
longitudinal (streamwise) velocity 
component ; 
bulk average velocity ; 
coordinate along duct periphery; xp = 0 
(corresponds to r = rg on symmetry plane) ; 
axial (spanwise) coordinate. 

Greek symbols 

8, coefficient of thermal expansion; 

viscosity ; 
density ; 
longitudinal 
direction). 

coordinate (streamwise 

INTRODUCTION 

WHILE numerical calculation schemes will probably 
never substitute entirety the experimental investi- 
gation of engineering flows, they have already proven 
extremely useful for exploring and helping to optimize 
fairly complicated flow systems in which measure 
ments are difficult, costly or laborious to obtain. 
Developing flows in curved ducts are in this class of 
flows. In this case, three-dimensionality and, at high 
velocity, turbulence effects impart a high degree of 
complexity to the flow. 

Although curved duct flows have and continue to be 
investigated experimentally, a substantial portion of 
the knowledge acquired derives from analytical studies 
and, more recently, detailed numerical calculations. A 
review of experimental, analytical and numerical stu- 
dies up to 1975 is given in [l]. Examples of analytical 
and numerical studies for the laminar flow regime are 
given in [2-6], and for the turbulent Bow regime (using 
two-equation turbulence models) in [7-91. While the 
laminar flow cases have yielded to numerical pre- 
diction and are currently limited mainly by cost 
considerations dictated by computational time and 
storage requirements, calculations of corresponding 
turbulent flows are less accurate [9]. 

Motions driven by buoyant forces arise in flows in 
which Gr/Re’ 2 1. In ducts with curvature the crite- 
rion is given by Gr/De’ 2 1, where the Dean number 
(Ile) characterizes the intensity of the cross-stream 
flow driven by an imbalance between centrifugal and 
radial pressure-gradient induced forces. Depending 
on the relative orientation (with respect to gravity) ofa 
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curved duct geometry and the ratio of buoyant to 
inertial forces, reversed flow regions can be expected to 
appear in curved duct flows subjected to thermal 
effects. Examination of the literature published to date 
suggests that, although forced convection heat transfer 
has been investigated (see, for example [5]), thermally 
induced buoyant motion in developing curved duct 
flow has received comparatively little attention [Z, 10, 
1 I]. This is the case in spite of the relative ease with 
which conditions are attained propitious to the occur- 
rence of the phenomenon. Thus, the attendant con- 
sequences on heat and mass transfer remain unknown 
for many systems of practical interest with natural 
convection present. Such systems include coiled 
chemical reactors, bends and tees in gas and oil 
pipelines, ventilating conduits in buildings, and va- 
rious types of clinical flows. For example, in a coiled 
tube with a chemical (or chemical reaction) sensitive to 
localized temperature differences, it would be desirable 
to know the number and extent of regions of flow 
reversal induced by buoyant motion as well as the 
intensity of the latter. 

The lack of detailed experimental information bear- 
ing on buoyant motions in curved passages with heat 
transfer is probably due, in part, to serious difficulties 
and large uncertainties associated with measurement 
techniques in such flows. While some of the difficulties 
and experimental uncertainty can be removed by using 
non-intrusive techniques, such as laser-Doppler velo- 
cimetry for measurements of velocity, the insertion of 
probes for measuring temperature will perturb the 
flow. Perturbations of this nature would be especially 
severe in regions of flow reversal. Given the consider- 
able difficulties associated with making measurement, 
it is surprising to find that no attempt has been made 
(to the authors’ knowledge) to investigate numerically 
the influence of buoyant effects on the motion and heat 
transfer in developing curved duct flows. In principle, 
the accuracy of such computations in the laminar flow 
regime for an incompressible fluid are limited only by 
the nature of the equations solved (parabolic, semi- 
elliptic or elliptic)* and the error incurred through 
numerical diffusion. Notwithstanding these limi- 
tations, provided that the integrity of the physics is 
maintained in the relevant transport equations and 
boundary conditions, computations of sufficient ac- 
curacy for engineering purposes can be made [5]. 

The present numerical study was motivated by the 
need to learn the extent and magnitude of thermally 
induced buoyant motions, and their tendency to 
produce recirculation, in ducts of strong curvature. 

_l____.l._-__-. ..--._ ..~~~__.. --_.__-._ ..- ..-.- ._ ..- 
*For flows in ducts of mild curvature wherein longitudinal 

and cross-stream pressure variation can be decoupled, calcu- 
lation schemes based on parabolic forms of transport equa- 
tions [6] (boundary layer equations) may be used. For 
stronger curvature it is necessary to account more exactly for 
ellipticity in the pressure field [12], or resort to semi-elliptic 
or fully elliptic calculation schemes which allow for the direct 
determination of pressure [3-5. 8, 91. 

Attention was focused on the laminar flow regime 
principally because of the uncertainties (and expense) 
associated with presently available models for the 
turbulent flow regime. However, except for systems 
with unusually high energy fluxes. the relative in- 
fluence of buoyant forces would be expected to 
decrease with increasing Re. Due to the expensive 
nature of the calculations, these were limited to a 
geometry of square cross-section and of radius ratio 
R,,/D, = 2.3 in the curved section. ir is presumed that 
the calculated results are representative of a range of 
flows with not too dissimilar dynamic, thermal and 
geometrical characteristics. 

CASE STUDIES AND FLOW CONDITIONS 

Two sets of calculations were made for the geometry 
shown in Fig. 1. In both cases the 90” curved section 
and exit tangent were vertically aligned, with the 
entrance tangent always in the horizontal plane. In one 
case [A), however, the exit tangent flow was aligned 
with the direction of gravity, while in the other (B) it 
was opposed to the direction of gravity. In both cases 
all the walls in the curved section were fixed at a 
temperature T, higher than the entrance flow, with 
adiabatic conditions imposed at all the remaining 
walls in the connecting tangent sections. The entrance 
and exit tangents were 5.8 and 12 hydraulic diameters 
long, respectively, and ensured that the flow in the 
curved section was sufficiently removed from the 
boundary conditions imposed at the entrance plane in 
the upstream tangent and the exit plane in the 
downstream tangent. The dimensionless parameters 
characterizing the flows were: Kc = 787, De = 367. 
RJD, = 1.3, / Gr 1 = 3.14 x 10’ and Pr = 1.0. The 
choice of conditions was dictated by the availability in 
[3] of corresponding measurements and calculations 
of this flow in the absence of thermal effects 

EQUATKWS, BOUNDARY CONDITIONS 
AND CALCULATION PROCEDURE 

Calculations were based on fully elliptic. three- 
dimensional finite difference forms of the steady state 

conservation equations for momentum and energy. 
The calculation scheme and its testing have already 
been described in detail in [3, 41. Its extension and 
validation for predicting forced convection heat trans- 
fer in curved duct flows may be found in [S]. A brief 
outline is given here of the adaptation of the calcu- 
lation scheme in [S] to flows with buoyant effects to 
which the Boussinesq approximation applies. 

Equations 
Transport equations in cylindrical coordinatest for 

a steady, incompressible, variable temperature, la- 
minar flow are given by: 

tln the upstream and downstream tangents, calculations 
were performed using equations expressed in terms of 
rectangular coordinate notation. Boundary conditions were 
overlapped between duct sections as explained in [3]. 
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CASE A : 'J+ BUOYANCY-OPPOSED FLOW 

CASE B : g+ BUOYANCY-ASSISTED FLOW 
12X0” 

1' 

EXIT PLANE 

'n 

FIG. 1. Coordinate system and calculated curved duct geometry indicating relative orientation of gravity. 
Case A, buoyancy-opposed flow ; Case B, buoyancy-assisted flow. 
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Momentum. 

(1) 

(2) 

(3) 

p 1 = -~+gv’v, (4) 

Energy. 

1 =k[VT], (5) 
where 

(6) 

These equations correspond to the buoyancy-opposed 
flow geometry in Fig. 1. For a buoyancy-assisted flow 
geometry, the sign for g in the momentum component 
equations must be reversed. 

The Boussinesq approximation [13, 141 has been 
used in deriving the forms of the equations given 
above. The range of validity of the approximate 
equations has been documented in [14] for the case of 
natural convection in a horizontal fluid layer, cor- 
responding to the Rayleigh-Bernard problem. 

Boundary conditions 
It is required to solve (l)-(5) together with the 

boundary conditions given below. 
Entrance plane (upstream tangent). 

v, = v, = 0, v4 = developed duct flow (7) 

T= T,,. 

Exit plane (downstream tangent). 

av, av, av, a7- o ---=_ 
a4 a+ a4=ZJ= ’ 

(8) 

with overall continuity of mass and energy imposed. 
Side walls. 

v, = 0, = Vb = 0 (9) 

T= T,,, at all walls in the curved duct 

q = 0 at all walls 
in upstream and downstream tangents. 

Symmetry plane. 

v _av,=%_ar_o z- aZ aZ aZ 
(10) 
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Calculation procedure 
Finite difference equations are obtained by integrat- 

ing (l))(5) over volume elements or “cells” discretizing 

the flow domain. The velocity components, pressure 
and temperature are the dependent variables com- 

puted on a number of staggered, interconnected grids, 
each of which is associated with a specific variable. The 

general form of the finite difference expression is given 

by 

4P=(i~,Aidi+So)/(f Ai+SP) (11) 
i=l 

where 4p (velocity component, pressure or tempera- 
ture) is the variable solved for at a position P in the 
discretized flow domain. The Ai coefficients are de- 

termined at the cell surfaces and represent the com- 

bined contributions of convection and diffusion to the 
balance of 4. Other contributions arising from tem- 

perature pressure, centrifugal and gravitational forces 
(sources or sinks) are contained in S, while the effects 

of the Coriolis force are contained in Sr. Detailed 

forms for S, and S, in variable property flows are 
available in [15]. 

Solution of the system of finite difference transport 

equations with appropriately differenced boundary 

conditions is achieved by means of a cyclic series of 
predictor-corrector operations as described in [3, 41. 

Briefly, the method involves using an initial or in- 
termediate value of the pressure field to solve for an 
intermediate velocity field. A pressure correction to the 
pressure field is determined by bringing intermediate 

velocities into conformity with continuity. Corrections 
to the pressure and velocity fields are applied and the 
energy equation is solved for T (in flows where energy 

and momentum are not linked through temperature 

effects this last step can be taken after the velocity and 
pressure fields have been determined). The above steps 

are repeated until some pre-established convergence 

criterion is satisfied. 

It has been shown in [3-51 that fully elliptic, three- 

dimensional computations of sufficient accuracy for 
engineering purposes can be obtained on fairly coarse, 

unequally spaced grids. Because of cost consider- 
ations, no attempt was made here to produce grid- 
independent results. Calculations were performed on 

an unequally spaced grid covering a symmetrical half 
of the ducted flow. The grid had 15 nodes in the radial 
direction, 12 in the axial and 50 in the streamwise 

(longitudinal) direction. The streamwise nodes were 
unequally distributed with 12 nodes in the upstream 
tangent and 19 nodes in the curved and downstream 
sections, respectively. Typical computation times and 
storage requirements for converged solutions were 
1870 CPU s and 171 Ks words on a CDC 7600 
machine. Strong radial variations in longitudinal 
pressure gradient and the presence of streamwise 
recirculation precluded the use of numerically more 
exact (and relatively inexpensive) parabolic or semi- 
elliptic calculation schemes. 

For the value of Gr studied here, noteworthy 

difficulties related to stability or convergence due to 
the presence of buoyant effects were not encountered. 
However, depending on the calculation case, under- 
relaxation factors for both pressure and velocities were 
varied from 0.1 to 0.75. Relative to a non-buoyant 

reference flow, the buoyant cases took about 1.3 times 
longer to attain a converged solution. It should be 

noticed that the relative contributions of the body 
forces to momentum balance in the curved duct 

section varied with angular position. For the flow 

conditions studied, maximum values of the centrifugal 
and Coriolis body forces [(@r)pfl(T- T,,) and 

(c, c+,/r) p/3( T- Ti,) respectively] were always less than 
0.1 “/, of the corresponding gravity terms and, hence. 
negligibly small. Nevertheless, the influence of centri- 
fugal and Coriolis forces could be significant in a 
gravitational-free situation and, therefore, were re- 

tained in the present formulation. 
At high values of Grashof (Gr 1 3 x 106), serious 

convergence problems were encountered. The in- 
stability was not in the nature of that described in, for 
example [ 161, due to large Coriolis forces. More likely 
it was related to the pressure correction technique 

derived by substitution of linearized velocity ex- 
pression (in terms of pressure) into the continuity 

equation [17]. The behavior at high Gr was exactly 
similar to not using sufficiently low under-relaxation 

factors when calculating the reference and low Gr 

number cases. Further lowering of the under- 
relaxation factors would have led to unrealistically 
long calculation times for converged solutions at high 

Cr. To avoid this approach, other possible remedies 
were investigated such as to : (a) Impose lower values 

for under-relaxation of the buoyancy terms during the 
early cycles of calculation and increase these slowly: 

(b) Commence buoyant calculation cases from the 
converged solution for the reference case and then 

“turn on” buoyant effects; (c) Evaluate conduction 
effects before attempting to calculate velocities in order 

to reduce the initial steep variations of temperature at 
heated walls ; (d) Use combinations of the above. None 

of these approaches was effective in helping to remove 
the instability. 

Finally, it should be mentioned that the presence of 
streamwise recirculation in the downstream tangent 
required that this section be long enough in order to set 
a/da = 0 boundary condidition at the exit plane. The 
influence of this condition was very small on the 

downstream tangent flow and completely negligible 
for the flow in the curved duct section. 

DISCUSSION OF CALCULATED RESULTS 

Calculations were performed for the two cases 
described above and for a reference flow of identical 
conditions [5] in which buoyant contributions to heat 
transfer were neglected. In all cases, regions of stream- 
wise flow reversal were predicted. 

Two recirculation zones, common to the three cases, 
were found to occur in the curved duct section and 
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OhXil 2.5k-m 5.km 

FIG. 2. Isovelocity contours of v+/YB at # = 16.87” in the curved duct section; case of buoyancy-op~sed 
flow. Recirculation zone bounded by contour level A and walls. 

were symmetrically located at the outer-radius wall flow geometry. For the cases of buoyancy-opposed 

corners. Thus, for example, Fig. 2 shows, in the form of flow and the non-buoyant reference flow, these two 
equal value dimensionless V, contours, the size and recir~uIation zones extended from approximately 4 
location of one of the symmetrical recirculation zones = 0 to C$ = 34”. The same recirculation zones were 
for the case of d, = 16.87” in the buoyancy-opposed about half as large, extending from 4 = 11 to 4 = 23”, 

FIG. 3. Isovelocity contours of v+/1/, at C$ = 61.87” in the curved duct section; case of buoyancy-opposed 
flow. Recirculation zones bounded by contour levels A and walls. 
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2.0 0 1.0 20 0 1.0 2.0 0 IO 2.0 0 IO 2 G 
v+/Ve (symmetry plane) 

FIG. 4. Radial variation of v,JV, as a function of longitudinal position. Profiles are located on the duct 
symmetry plane: (. .) non-buoyant flow, (---) buoyancy-assisted flow (-) buoyancy-opposed flow. 

and were less intense in the case of the buoyancy- 
assisted flow. The maximum reverse flow velocities in 
these zones, for each case, were as follows: 
v+/v, 5 0.11 for buoyancy-opposed flow ; 
v+f V, 5 0.06 for buoyancy-assisted flow ; II&~, 5 0.11 
for the reference nonbuoyant flow. Similar regions of 
flow reversal have been predicted and discussed in 
[3-41. The phenomenon is due to an unfavorable 
longitudinal pressure gradient near the outer-radius 

-0.7 

- 0.6 

-0.5 

-0.4 : 

1 1 1 1 1 1 ’ 
-0.4 -0.2 0 0.2 

0, Lz, plane1 

FIG. 5. Radial and axial variation of transverse velocity 
components V./V, and v,/V, at 4 = 41.8" in the curved duct 
section: (. .) non-buoyant flow, (---) buoyancy-assisted 

flow, (-) buoyancy-opposed flow. 

wall at the entrance to the curved duct. However, 
present results show that when buoyant effects oppose 
the main flow (Case A), flow recirculation is intensified. 
By contradistinction, when buoyant effects are aligned 
with the main flow (Case B), both the size and intensity 
of the recirculation zones are substantially reduced. 

In addition to the outer-corner reversed flow re- 
gions, the buoyancy-opposed flow showed three more 
zones of flow reversal at the inner radius wall. These 
may be seen in Fig. 3, corresponding to a longitudinal 
position of 4 = 61.87”. The single recirculation zone 
located on the symmetry plane extended from b, = 34 ’ 
in the curved duct to a distance 1.33 hydraulic 
diameters into the downstream tangent. The smaller 
symmetrical reversed flow zones in the corners exten- 
ded from about 4 = 34” to 0.25 hydraulic diameters 
into the downstream tangent. The maximum reversed 
flow on the symmetry plane was u+/Vb = 0.18 at 4 
= 61”, and q/1/, = 0.05 at the corners for 4 = 45 ‘. 

Non-dimensional profiles of the main flow velocity 
component (Q/V,) and temperature 
(T, - T)/(T, - Tin) are given in Figs. 4 and 6 for 
various longitudinal stations located on the duct 
symmetry plane. At about 4 = 45”, significant differ- 
ences already appear among the velocity profiles with 
the differences becoming especially accentuated at the 
further downstream stations. Relative to the reference 
case, in the flow where buoyant forces oppose the main 
flow direction (Case A), the results show the main flow 
accelerating near the outer-radius wall while decelerat- 
ing near the inner-radius wall. By contrast, in the flow 
where buoyant forces reinforce the main flow (Case B). 
the calculations show the main flow component 
decelerating near the outer-radius wall while accelerat- 
ing near the inner-radius wall. Thus in the buoyancy- 
assisted flow case, the net effect of buoyancy is to 
distribute more evenly the longitudinal component of 
momentum. This last remark is partly supported by 
the transverse velocity component profiles (u,lV, and 
c,/V,) shown in Fig. 5 at a longitudinal station of (b 
= 47X”, and the vector plots for transverse com- 
ponents at 87”, shown in Figs. 7 and 8. The relatively 
large levels of o,/V, in the vicinity of the inner-radius 
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I 
0.5 1.0 0.5 1.0 

(Tw-T)/(Tw -Tin) (Symmetry Plane) 

FIG. 6. Radial variation of temperature at two longitudinal positions. Profiles are located on the duct 
symmetry plane: (. .) non-buoyant flow, (---) buoyancy-assisted flow, (-) buoyancy-opposed flow. 

wail for the case of buoyancy-assisted flow are further 
indications of the evening out effect being produced by 

buoyant forces on the longitudinal component of 
momentum. By comparison, corresponding values of 

Q/V, at the same locations for buoyancy-opposed 

flow are weak, even though large values of u&a and 
I@‘, arise near the outer-radius wall. 
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The temperature profiles given in Fig. 6 do not show 
the marked differences of the longitudinal velocity 

component. Nevertheless, the differences which do 
arise are in basic agreement with the discussion 

presented above in connection with the velocity com- 

ponents as influenced by buoyant effects. It is worth 
noting that, in passing from the bend into the down- 

SwFlR 
cEcn7s 

F 
4.aE-01 

0 .m+clo 

FIG. 7. Vector plot of cross-stream velocity components at 4 = 87” in the curved duct section; case of 
buoyancy-opposed flow. 
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r i 

I- 

L o.m+ao 

FIG. 8. Vector plot of cross-stream velocity components at C#J = 87” in the curved duct section; case of 
buoyancy-assisted flow. 

stream tangent, the buoyancy-assisted flow attains 

a higher average temperature than the buoyancy- 

opposed flow. 
The peripheral variation of local Nusselt number 

[calculated from Nu = (iiT/& x D,)/(T, - T,)] is 
shown in Fig. 9 at a location of 4 = 87” in the curved 

duct section. Values for Nu have been set to 0 at the 
duct corners. The largest differences between Nu arise 
at the inner-radius wall. It is clear that the net result of 

0 0.5 I.0 1.5 2.0 

XP/DH 

FIG. 9. Peripheral variation of local Nusselt number at 4 
= 87” in the curved duct section: (, .) non-buoyant flow, 
(---) buoyancy-assisted flow, (-) buoyancy-opposed flow. 

buoyancy at this wall is to enhance heat transfer to the 

flow, by a factor of about 2, when buoyant forces are 
aligned with (rather than opposed to) the main flow 
direction. Reduced heat transfer at the inner-radius 

wall in the case of the buoyancy-opposed flow is due to 

the appearance there of three regions of flow reversal; 
see Figs. 3 and 7 where the latter figure shows 
substantially reduced secondary motion. and of op- 
posite rotation to the main cross-stream flow, near the 
inner radius wall. 

Plots for values of mean Nusselt number as 

a function of longitudinal position in the curved duct 

are given in Fig. 10. In general, higher rates of heat 
transfer always arise for the case of buoyant forces 
aligned with the main flow. The slightly smaller initial 

values of Nu for the buoyancy-opposed flow (relative 
to the non-buoyant reference case) are related to the 
symmetrical flow reversals at the outer-radius wall. At 

larger 4, the Nu for this case increases and overtakes 
corresponding values for the reference case. This is 
partly explained by noting that inner-wall recircu- 
lation zones for this case constrict the main flow and 
force steeper gradients of vm at the outer-radius wall, 
thus increasing the overall transfer of heat to the flow. 

CONCLUSlONS 

A numerical study has been conducted to determine 
the relative influence of buoyant effects in developing 
curved duct flows to which the Boussinesq approxi- 
mation apply. It is believed that these computations 
are the first of their kind. Although limited by cost 
considerations to a specific geometry and flow con- 
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+ (radians) 

FIG. 10. Longitudinal variation of mean Nusselt number in the curved duct section: (. .) non-buoyant flow, 
(---) buoyancy-assisted flow, (-) buoyancy-opposed flow. 

ditions, the results are of value for helping to under- 
stand the role played by buoyant forces in enhancing 
or diminishing heat transfer to flows in ducts with 
strong curvature. 

In the vertically aligned geometries considered here, 
recirculation zones were predicted at the outer-radius 
wall for all cases, and at the inner-radius wall also for 
the case of buoyant forces opposed to the main flow 
direction. Maximum values of reversed flow intensity 
were given by v,+/V, 5 0.17-0.18 at the outer- and 
inner-radius walls of the flow geometry for the case of 
buoyant forces and main flow direction opposed. 

When buoyant forces are aligned with the main 
flow, their effect is to enhance heat transfer to the flow 
and to even out the cross-stream plane distribution of 
streamwise momentum. This effect is particularly 
noticeable at the inner-radius wall, where local values 
of the Nusselt number can increase two-fold relative to 
corresponding values in a buoyancy-opposed flow 
geometry. 

The existence of strong radial variations in longitu- 
dinal pressure gradients and of reversed flow regions 
has imposed the need to deal with fully elliptic 
transport equations. Unfortunately, these are expen- 
sive to solve in terms of calculation times and storage 
requirements. However, because it has been shown in 
earlier studies that realistic calculations can be perfor- 
med on unequally spaced grids of the refinement used 
in this study, these and similar results should be of use 
for engineering purposes. 
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CALCUL NUMERIQUE DE LA RECIRCULATION NATURELLE EN ECOULEMENT 
LAMINAIRE DANS UNE CONDUITE COURBE ET CARREE 

R&u&-L’infiuence des effets des forces d’Archimtde sur le transfert thermique dans des Ccoulements i 
l’interieur dun tube fortement cintre a Bti btudit numiriquement dans le cas special du rkgime permanent de 
I’ecoulement laminaire incompressible dun fluide a propriitis physiques constantes pour lequel s’appliquent 
les approximation de Boussinesq. On ttudie les deux cas suivants : forces d’Archimede (a) alignees avec, et (b) 
opposees a la direction principale de l’ecoulement. La presence de quelques zones de recirculation necessite la 
solution d’equations elliptiques de transport. On trouve que lorsque les forces sont aligntes avec la direction 
principale dans un tube cintre il peut y avoir un accroissement significatif du transfert thermique, 
spCialement sur la paroi la plus proche du centre du cintrage. Au contraire, lorsque Ies forces et I’ecoulement 
principal sont opposes, trois zones suppl~mentaires de recirculation qui apparaissent & la paroi de plus petit 

rayon sont la cause dune reduction du transfert de chaleur. 

NUMERISCHE BERECHNUNG DER REZIRKULATION DURCH AUFTRIEB BE1 
LAMINARER STRGMUNG IN GEKRUMMTEN LEITUNGEN MIT 

QUADRATISCHEM QUERSCHNITT 

2usanunenfaasung - Es wurde der EinfluR von Auftriebseffekten auf den sich entwickelnden Wirmeiiber- 
gang bei Strlimung durch stark gekriimmte Leitungen numerisch untersucht, und zwar fur den spezielien 
Fall der stationaren inkompressiblen laminaren Stromung eines Fluids mit konstanten Stoffeigenschaften, 
auf das die Boussinesq-Approximationen anwendbar sind. Es wurden die beiden Falle untersucht, da0 die 
Auftriebskrlfteentweder in Richtung oder in Gegenrichtung der Hauptstriimung wirken. Das Auf&ten von 
mehreren Rezirkulationszonen in Strijmungsrichtung macht die LSsung der vollstandigen elliptischen 
Transportgleichungen erforderhch. Es wurde festgestellt ; wenn die Auftriebskrafte die Richtung der 
Hauptstromung haben, konnen diese bei Stromungen durch gekriimmte Leitungsgeometrien die Warme- 
iibergangsrate erheblich verbessem, insbesondere an der Wand des Innenradius. Im Gegensatz hierzu 
sind, wenn Au~iebskr~fte und die Hauptstr~mung entgegenge~chtet sind, drei zusatzliche ausgedehnte 
Rezirkulationszonen, die an der Wand des Innenradius auftreten, die Ursache fur verringerten Wlrmeiiber- 

gang an die Stromung. 

~~C~EHHbI~ PACYET PE~~PKY~~~~~ ~HflKOCTM, OBYCJIOBJIEHHOH 
APX~ME~OBbIM~ Panama HPM ~AM~HAPHOM TEYEHHH B ~CKP~B~EHHOM 

KBA~PATHOM KAHAJIE 

Amterenm~ - B npw6ns~emiw Byccmiecxa npoaezeeso %icneuuoe uccnenoaaune BIHBHHR apxH.Meno- 
BbIX CHJI Ha npouecc Tennoo6MeHa npe TeHeHHH ~IBKOCTH * cHnbH0 HcKpHBneHHoM KaHane :I.JIR cnysan 
CTauHOHapHOrO HeCEHMaeMOrO naMHHapHOr0 Te’IeHHX mHBKOCTH C IIOCTOIHHbIMH (PH3BWKHMH 
cBoHcTBaMa. Mccnenoeanocb naa cnyqaa : Koraa IIOAbeMHbIe CHJIbI 6bIJII-I HanpaBneHbI B CTOpOHy 

mHnKeHHs OCHOBHOrO nOTOKa H HaBCTpeYy eMy. Hanmtne HeCKOJIbKHX peIIHpKynIWHOHHblX 30H n0 
HanpaBneHHIo ‘re~eHHs Tpe6yeT pemeHwa nOnnbrx 3JIJIHnTH=IeCKHX ypaBHeHHli neperloca. HaHAeHO, 410 
B nepBOM CnyHae IIOnbeMHbIe CH.IIbI MOryT 3HaYHTefibHO HHTeHCH+HIIHpOBaTb IIepeHOC TeIIna Ha CTeHKe 
OCO6eHHO Ha BHyTpeHHeM pafiHyCe. Bo BTOpOM )Ke CJIyHae B UCKp~BneHHOM KaHaJIe Ha 5HyTpeHHeM 
panuyce noB~~~~~* YPH ~0nonH~enbn~e ebIT*ayTbIe ~~PKynXUUOuH~e 30Hb1, KoTopbIe CHmKaIOT 

WHTeHCWBHOCTb nepeIIa%I TenBa K nOTOK)’ )KN;IKOCTH. 


